Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia

Estimation of COVID-19 Impact in Virginia

April 13, 2020

(data current to April 11, 2020) Biocomplexity Institute Technical report: TR-2020-048

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

Who We Are

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response and support for Influenza, Ebola, Zika, others
- COVID-19 researchers on today's panel

Bryan Lewis Research Associate Professor

Chris Barrett Executive Director

Madhav Marathe Division Director

BIOCOMPLEXITY INSTITUTE

Overview

- Goal: Understand impact of COVID-19 mitigations in Virginia
- Approach:
 - Calibrate explanatory mechanistic model to observed cases
 - Project infections through the end of summer
 - Consider a range of possible mitigation effects in "what-if" scenarios

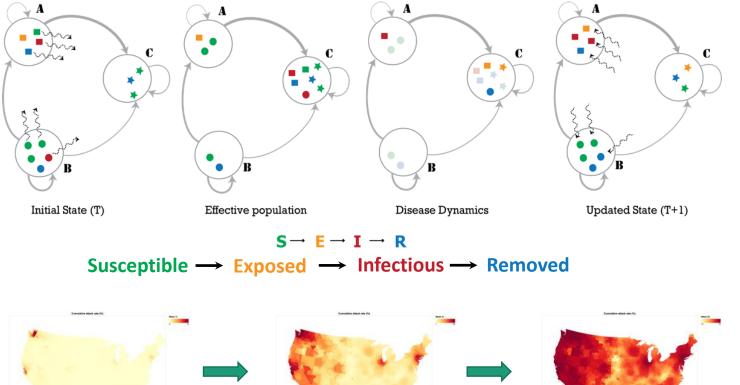
• Outcomes:

- Ill, Confirmed, Hospitalized, ICU, Ventilated, Death
- Geographic spread over time, case counts, healthcare burdens

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Current social distancing efforts are working.
- Under current conditions, Virginia *as a whole* will have sufficient medical resources for at least the next couple months.
- Lifting social distancing restrictions too soon can lead quickly to a second wave.
- Further modeling could elucidate the effectiveness of test-trace-isolate policies.
- The situation is changing rapidly. Models will be updated regularly.



Model Configuration and Data Analysis

Simulation Engine – PatchSim

- Metapopulation model
 - Represents each population and its interactions as a single patch
 - 133 patches for Virginia counties and independent cities
- Extended SEIR disease representation
 - Includes asymptomatic infections and treatments
- Mitigations affect both disease dynamics and population interactions
- Runs fast on high-performance computers
 - Ideal for calibration and optimization

Venkatramanan, Srinivasan, et al. "Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints." PLoS Computational Biology 15.9 (2019): e1007111.

BIOCOMPLEXITY INSTITUTE

Model Configuration

- Transmission: parameters are calibrated to the observed case counts
 - Reproductive number: 2.1 2.3
 - Infectious period (time of infectiousness before full isolation): 3.3 to 5 days
- Initial infections: Start infections from confirmed cases by county
 - Timing and location based on onset of illness from VDH data
 - Assume 15% detection rate, so one confirmed case becomes ~7 initial infections
- **Mitigations:** Duration and intensity of mitigations into the future are unknowable, thus explored through 5 scenarios

14-Apr-20

Mitigation Scenarios

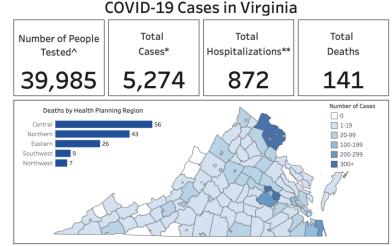
- Consider 5 possible futures
 - Two levels of intensity with two durations and one with no effect
- Start of social distancing: March 15th, as measured from VDH data
- Duration: Lift on April 30th or lift on June 10th
- Intensity of mitigation:

Slowing growth vs. Pausing growth

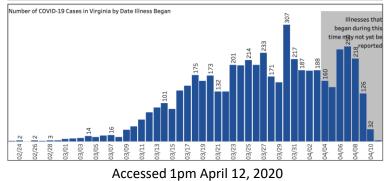
- **Slowing** Social distancing slows the growth, but new cases do increase
- **Pausing** Social distancing pauses growth, keeping new cases steady
- Pausing scenarios track the data better

Duration (lift date)	Intensity	Short Name	Description
Apr 30 th	Slowing	Slow - Apr30	Slowing intensity, lift April 30 th
June 10 th	Slowing	Slow - Jun10	Slowing intensity, lift June 10 th
Apr 30 th	Pausing	Pause – Apr30	Pausing intensity, lift April 30 th
June 10 th	Pausing	Pause – Jun10	Pausing intensity, lift June 10 th
None	Unmitigated	Unmitigated	No effect of social distancing

Full Parameters


Parameter	Estimated Values	Description [Source]
Transmissibility (R0)	2.2 [2.1 – 2.3]	Reproductive number *
Incubation period	5 days	Time from infection to Infectious *
Infectious period	3.3 - 5 days	Duration of infectiousness *
Proportion asymptomatic	50%	Proportion of infections that don't exhibit symptoms *
Proportion hospitalized	5.5% (~20% of confirmed)	Symptomatic Infections becoming Hospitalized *
Proportion in ICU	20%	Hospitalized patients that require ICU *
Proportion ventilated	70%	Proportion of ICU requiring ventilation *
Onset to hospitalization	5 days	Time from symptoms to hospitalization *
Hospitalization to ventilation	3 days	Time from hospitalization to ventilation *
Duration hospitalized	10 days	Time spent in the hospital
Duration ventilated	14 days	Time spent on a ventilator +
Infection detection rate	15%	One confirmed case becomes ~7 initial infections #

* CDC COVID-19 Modeling Team. "Best Guess" scenario. Planning Parameters for COVID-19 Outbreak Scenarios. Version: 2020-03-31. † Up-to-date. COVID-19 Critical Care Issues. <u>https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-critical-care-issues?source=related_link</u> # Li et al., *Science* 16 Mar 2020:eabb3221 https://science.sciencemag.org/content/early/2020/03/24/science.abb3221


Calibration Approach

• Data:

- County level case counts by date of onset (from VDH)
- Confirmed cases for model fitting
- **Model:** PatchSim initialized with disease parameter ranges from literature
- Calibration: fit model to observed data
 - Search transmissibility and duration of infectiousness
 - Markov Chain Monte Carlo (MCMC) particle filtering finds best fits while capturing uncertainty in parameter estimates
- **Project:** future cases and outcomes using the trained particles

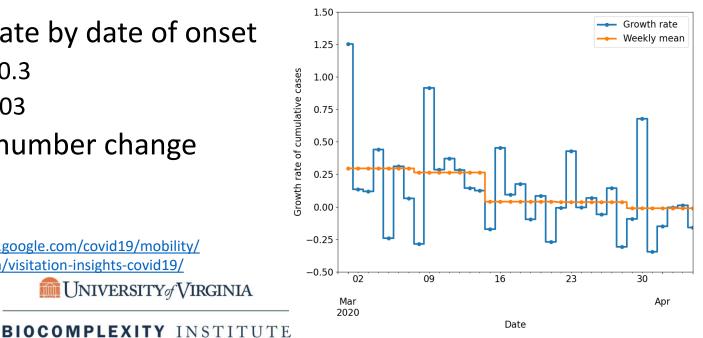
Health District	Locality	Number of Cases
Alexandria	Alexandria	198
Alleghany	Alleghany	4
	Botetourt	23
	Covington	1
	Craig	2
	Roanoke County	14
	Salem	1
Arlington	Arlington	366
Central Shenandoah	Augusta	17
	Buena Vista City	4
	Harrisonburg	81
	Lexington	3
	Rockbridge	3
	Rockingham	43

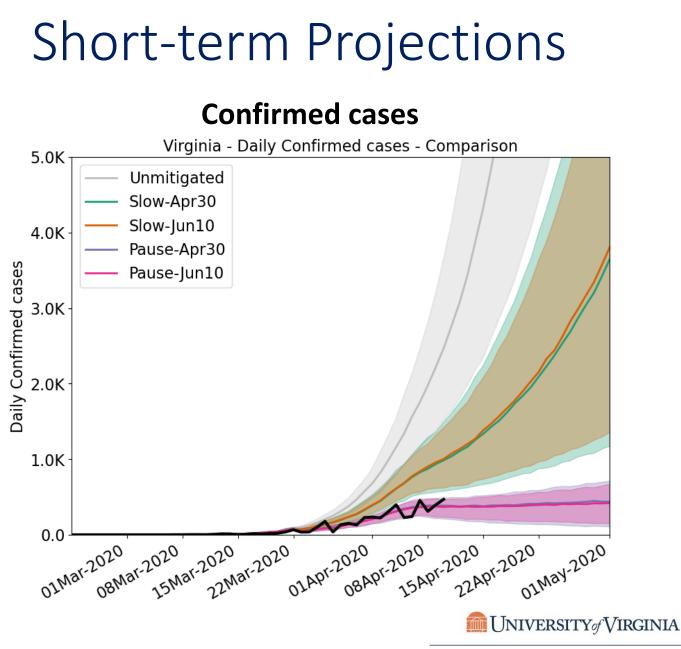
https://public.tableau.com/views/VirginiaCOVID-19Dashboard/VirginiaCOVID-19Dashboard

UNIVERSITY of VIRGINIA

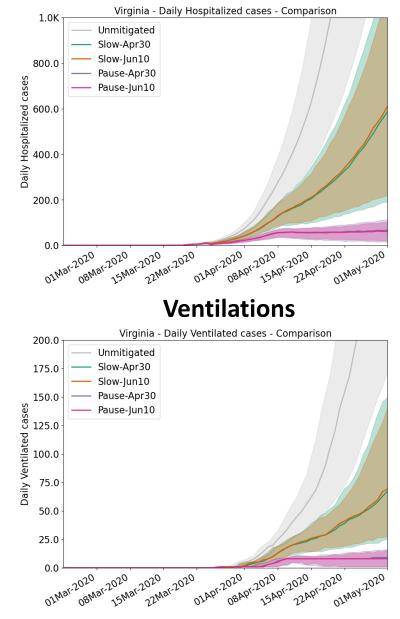
Impact of Interventions

Estimating Effects of Social Distancing

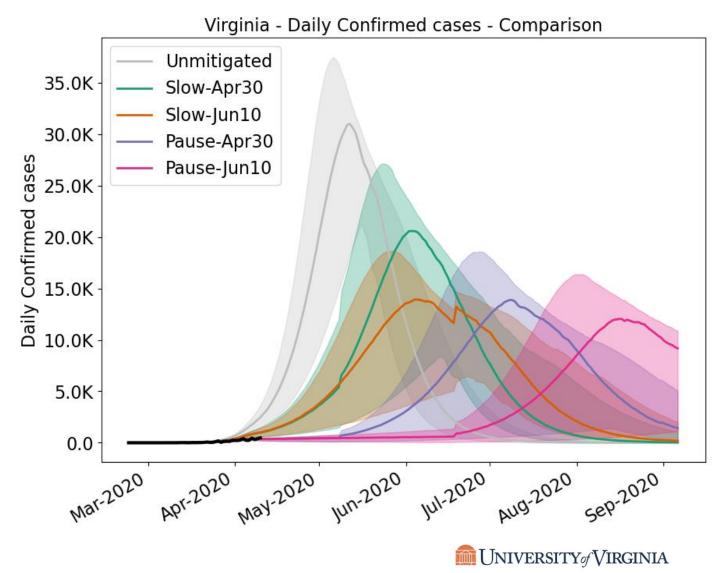

- Anonymized open mobility data shows Virginia greatly reduced activities
 - Google: -44% retail & recreation, -18% grocery stores, -39% workplaces
 - Cuebiq: >50% reduction of average individual mobility compared to Year Avg.


VDH data shows reductions in growth rate starting in mid-March

- Weekly average growth rate by date of onset
 - Week before March 15 = 0.3
 - Week after March 15 = 0.03
- Equivalent reproductive number change
 - 2.2 before March 15th
 - 1.1 after March 15th


Google. COVID-19 community mobility reports. https://www.google.com/covid19/mobility/ Cuebig: COVID-19 Mobility insights. https://www.cuebig.com/visitation-insights-covid19/

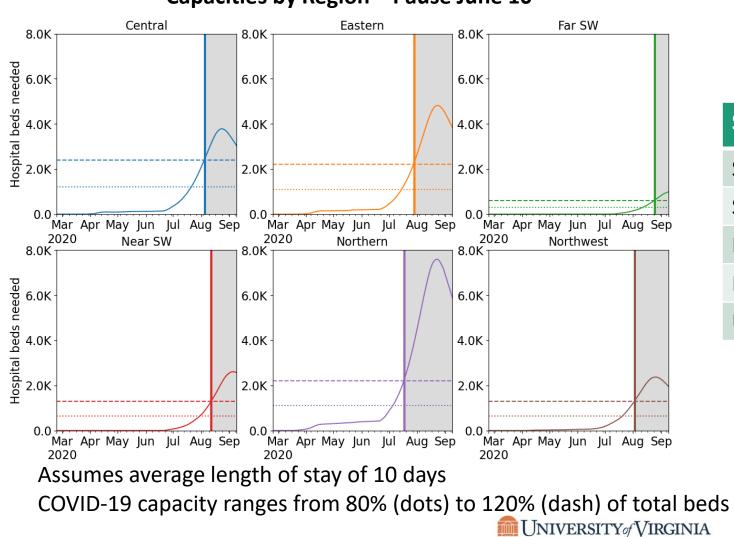
UNIVERSITY of VIRGINIA



Hospitalizations

BIOCOMPLEXITY INSTITUTE

Stay the Course: Future Depends on Policy



Weekly New Confirmed Cases

Week ending	Unmitigated	Slow Jun10	Pause Jun10
4/12/20	11,846	5,518	2,469
4/19/20	25,712	8,502	2,599
4/26/20	53,562	13,076	2,742
5/3/20	101,876	19,881	2,944
5/10/20	164,527	29,567	3,151
5/17/20	200,184	42,312	3,345
5/24/20	182,818	57,679	3,558
5/31/20	136,652	73,380	3,770
6/7/20	84,016	85,874	3,962
6/14/20	46,350	89,390	4,144
6/21/20	23,363	85,226	4,470
6/28/20	11,366	91,648	7,850

Numbers are medians of projections

Hospital Demand and Capacity by Region

Capacities by Region – Pause June 10

Date ranges when regions are estimated to exceed surge capacity

Scenario	Date Ranges	
Slow – Apr30	Early May – Early June	
Slow – Jun10	Early May – Mid June	
Pause – Apr30	Mid June – Late July	
Pause – Jun10	Mid July – Late August	
Unmitigated	Late April – Mid May	

Social Distancing postpones the time when capacity is exceeded 1 to 2.5 months

Timing estimates can be used for planning to augment existing capacities if needed

Ongoing Efforts and Improvements

- Incorporate age structure into transmission dynamics and stratify outcomes by age in these projections
- Incorporate Virginia-specific outcomes and durations which will better tailor these analyses to our Commonwealth
- Assess evidence for the role of seasonality, and incorporate if warranted
- Analyze Test-Trace-Isolate mitigations
- Connect forecast demand to VDH dashboard

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Current social distancing efforts are working.
- Under current conditions, Virginia *as a whole* will have sufficient medical resources for at least the next couple months.
- Lifting social distancing restrictions too soon can lead quickly to a second wave.
- Further modeling could explore the effectiveness of test-trace-isolate policies.
- The situation is changing rapidly. Models will be updated regularly.

References

Venkatramanan, S., et al. "Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints." *PLoS computational biology* 15.9 (2019): e1007111.

Arindam Fadikar, Dave Higdon, Jiangzhuo Chen, Bryan Lewis, Srinivasan Venkatramanan, and Madhav Marathe. Calibrating a stochastic, agent-based model using quantile-based emulation. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1685–1706, 2018.

Adiga, Aniruddha, Srinivasan Venkatramanan, Akhil Peddireddy, et al. "Evaluating the impact of international airline suspensions on COVID-19 direct importation risk." *medRxiv* (2020)

NSSAC. PatchSim: Code for simulating the metapopulation SEIR model. <u>https://github.com/NSSAC/PatchSim</u> (Accessed on 04/10/2020).

Virginia Department of Health. COVID-19 in Virginia. <u>http://www.vdh.virginia.gov/coronavirus/</u> (Accessed on 04/10/2020)

Biocomplexity Institute. COVID-19 Surveillance Dashboard. https://nssac.bii.virginia.edu/covid-19/dashboard/

Google. COVID-19 community mobility reports. https://www.google.com/covid19/mobility/

Cuebiq: COVID-19 Mobility insights. https://www.cuebiq.com/visitation-insights-covid19/

Biocomplexity page for data and other resources related to COVID-19: <u>https://covid19.biocomplexity.virginia.edu/</u>

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Andrei Bura, Jiangzhuo Chen, Clark Cucinell, Allan Dickerman, Stephen Eubank, Arindam Fadikar, Joshua Goldstein, Stefan Hoops, Sallie Keller, Ron Kenyon, Brian Klahn, Gizem Korkmaz, Vicki Lancaster, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Fanchao Meng, Henning Mortveit, Mark Orr, Przemyslaw Porebski, SS Ravi, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Aaron Schroeder, Stephanie Shipp, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Amanda Wilson, Dawen Xie

MUNIVERSITY of VIRGINIA